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Methods of nonequilibrium thermodynamics are used for constructing a model 
of two-phase medium (incompressible fluid with particles) with allowance for 
microrotation and microdeformations in each phase and of chaotic fluctuating 

motion of particles that is defined by the effective fluctuation temperature. 
Obtained equations define the effects of intensification of diffusion of suspen- 

ded particles and admixtures in the fluid phase due to fluctuations. Depend- 
ence of the transport coefficient on fluctuation temperature reduces in the 

limit case to the dependence of the rate of shear intensity. 

Theoretical difficulties in the application of the microrheological method in dyn- 
amics of concentrated suspensions compel us to turn to generalmethods of mechanics 
of continuous medium [l-5]. However the derivation of determining equations by such 
methods results in excessive generality, as soon as one disregards the contraints imposed 
by linear nonequilibrium thermodynamics; such constraints are sometimes necessary for 

taking in the model into account ph~om~a that exist in reality. 
It is shown below that a number of important nonlinear effects can be allowed for 

in the suspension model without resorting to essentially nonlinear modifications in the 
formalism of description of irreversible phenomena owing to the transition to multi- 

velocity cont~uum and the introduction of internal degrees of freedom. 

1. Let us consider a mixtire consisting of an incompressible Newtonian fluid car- 
ring suspended particles of incompressible material, whose concentration is generally 

not low. We assume that the motion of volumes of material containing a large number 

of particles is regular (motion of the mixture as a whole is laminar), but the motion 
of each individual particle are subjected to random fluctuations, and this leads to flu- 

ctuations of the surrounding fluid velocity. Only Brownian fluctuations are present in 

a quiescent fluid; in an inhomogeneous flow fluctuations are considerably increased 

owing to the interaction (“collisions”) of particles. The pseudo-turbulence generated 

by this results in the alteration of the transport properties, in particular to intensificat- 

ion of diffusion of suspended particles and admixtures dispersed in the fluid phase. 
The total energy of phase af a = ‘i and M. = 2 relate, respectively, to SUSP- 

ended particles and the carrier) per unit of mass is defined by formula 

.P = 1/2 iiiauia -f- Ua 
( I. 1) 

where uia is the mean-mass velocity, Ua is the internal energy of phase which com- 

prises the energies of thermal motion of molecules and of fluctuations. 
Each molecule obviously performs both these random motions: it seems reasonable 
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to consider the thermal motion on the background of ~uc~atio~* If these motions 

are considered to be statistically independent, it is possible to introduce for a number of 
parameters, such as internal energy, entropy, heat flux, stress tensor, etc., additive 
components which correspond to thermal and fluctuation motions which are denoted 
below by subscripts T and F 

The basic assumption used subsequently is that the relation between components 
ua and 8~ is of the form 

u’ = UT’ (I!&“) + UF’ (p’, SF’) 
(1.2) 

u2 = UT= (sy2, C f c=) + uF= (p", SF=) 

where p@ =: Pea are mean phase densities, Ca are mass concentrations(Cl s C, 

cs =, 1 - C), c is the mass concentration of admixture in the fluid phase (per unit 
mass of mixture), and p = const is the density of mixture. The true densities of 
phases are assumed below to be the same and equal p_ 

For the mixture as a whole 

E = ZCaEa , S zz ZCaSa, Ui = ZCaUia; Vi” rz Uia - Ui 
(X.3) 

where the symbol Z denotes here and in what follows summation over a (over phases). 
The Gibbs identities specified in the form 

dUT’ = T$ dS T, dUr2= f TT2dS~2 + pd (c I P) 

dUpa = TF~~SF” + pFa (pa)-” dpa 

(1.4) 

define for each phase the “thermal” and “fluctuation’ temperatures Tya and 
the fluc~ation pressures PF~ , 

Tka, 
and the admixture chemical potential f~ . Generally 

TT' # TT= and Tpl =#= T$ , however, for simplicity we disregard these inequ- 
alities and set TTa = TT and TF~ = TF. 

In (1.2) and (1.4) functions UTa play a part similar to that of internal energy in 
homogeneous incompressible media, while functions UFa are similar to those def- 
ining the internal energy of compressible gas [I.]. 

In the equi~brium ~e~~yna~~ state Ua = Ua (Sa, pa, c) , hence the 
Jacobian D (Ua, SE) / I) (ST@, &.a) vanishes and TF = TT (only Brownian fluc- 
tuations are present). 

Note that the simplest of possible definitions (see Sect. 5 below) of fluctuations by 
the introduction in the analysis of energy UF or of the effective temperature TF 
was proposed earlier (see, e. g., [4,6,73, but the complete scheme of reasoning pecu- 
liar to nonequi~b~um thermodynamics did not take these parameters into account. 

Formulas (X.2)-(1.4) are used below together with the laws of conservation for 
obtaining the equation of entropy balance, and from it the determining equation, 
The analysis of the latter is aimed at pointing out some useful generalizations within 
the bounds of the traditional phenomenological approach and with a more detailed 
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description that takes into account the two-phase effect and the fluctuations. 

2. We define the mixture kinematics by mean-mass velocities of phases Ui u 
and tensors ZUija whose symmetric parts r&j) represent rates of deformation and the 
antisymmetric parts z&I p re resent angular velocities of microrotations. Rectangular 
Cartesian coordinate system is used here and subsequ~tly. 

The laws of conservation of the rnas of phases and of admixture, of momentum 
and moment of momentum are of the form 

a&P + 3, (~~~~U) I= 0 (2. I) 

p (d,c +-- u@,c) = - d, jl (2.2) 

d, (@UkP) + a, (p+.PQ”) = - &&6 -t- &a + P”~!c” (2.3) 

d, (p~~~;j -+ 3, (p~~~~~~) = - ~*~~~~, -I- xi (&a + Pftplj - 
(2.4) 

x1( (&ia $- p”fiaj + pa;,,] + n/r;&, (& = xiUka - xkUia) 

where 8, and 8, denote differentiation with respect to t and z1 ; ji is the ad- 
mixture diffusion flux,PlkG are partial stress tensors fku and @ika are external mass 
forces and moments, and Rka and &f$ka are volume forces and moments of phase in- 

teraction. 

Setting 

GEigl = - &$i/tl+ %PE - Sk& 

(2.5) 

where mika are symmetric tensors of ” microstresses”. 

The method of introduction of supplementary kinematic variables for each phase 
and the formuiati~ of Eq, (2.5) is similar to that used in [2]. The “~croinertia~ 

terms have been omitted in formula (1.1) for energy Ea and in expressions for Iik” 

for simplicity; this affects neither the form of determining relationships subsequently 

derived, nor the final conclusions. 
The question of conditions that validate this simp~fication and of the range of 

problems for which the introduction of further kinematical details is necessary, is be- 

yound the scope of this paper. It should be, however, noted that manyconsequenceof 
the allowance for fluctuations remain valid in the case of single-velocity definition 

of the mixture and without the ~tr~u~~~ of variables Wika- 

We stipulate theequationof conservation of total energy of the form 

aka (r_tafka + Rka) + ‘/$& (pa@rk + M?k) i_ Wa = 0 
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where I$ is the heat flux and Wa the interphase energy flux. In order to have the 
combined equations (for the mixture) free of phase interaction characteristics, we set 

From (2.6) using conventional methods for the heat influx we have the equations 

pa (a, + upd,) Ua = - d,qp - pfiky% - 
p;r,B?k + x&w& + &%%?i + Wa 

e?k = l/2 (d,uka + a/$Qa), @if = l/2 (&uka - akuIa) 

B$ = i$j - w;k], $k = &k) + m& 
Taking into consideration the remark about the additivity of heat and fluctuation 

components (Sect. 1) the above equations can be written as 

(2.8) 

&Zkw;k) + $hikd,W% + WTa + ea 

Parameter 8a represents the energy exchange between the “degrees of freedom” 
(i .e. between thermal and fluctuation motions) in the a -phase. 

3. Using (1.2)-( 1.4), (2. l), and (2.8), for the entropy balance we obtain an eq- 
uation of the form 

p&S + alG, = R 
(3.1) 

G, = r, (paSaZLla + qTlaTT-' + qFla TF-~) -/-Ljl' 

jl' = j[ - pcV1" (V,2 = zq - u*) 
The dissipation function R (see formulas (3.4) and (3.5) below) is the bilinear 

form formed by generalized thermodynamic fluxes and forces. The latter contain 
quantities e# and wija related by conditions of incompressibility of the mixture 
and individual phases 

eii = 0, Wiia = 0 (3.2) 

the first of which, with allowance for (1.3) may be written as 

xcaeica + (Ui’ - Ui’) diC = 0 (C = Cl) (3.3) 

The expressions for thermodynamic fluxes must, in conformity with the three cond- 
itions (3.2), be determined to within the three undetermined scalar parameters. 
Multiplying the two formulas (3.2) and (3.3) by the scalars ba and A , respectively, 



126 s. A. kgirer 

and adding these zero products to R , after rearrangement of terms we obtain 

R = 3 Y"X" 
(3.41 

where the thermodynamic forces xy” and fluxes YS are represented by the follow- 
ing quantities: 

S’ = Tp - TT, Y1 :~= T$J’F;lEI (3.5) 

Xl2 = d,TT, YI’ = - TTF (qrl - r_lj!‘) 

x,3 = i),Tp, ]‘I: -_-: - T& 

x,4 = a,p, Y,4 - _ Ti?j,' 

x,5 = 711T - (I 2 l , I-,> :-- - T?IRTI - T;‘AFI -+ Ad,C 

X& = e&, y;, = - T&&h., - T+ (PF@) -- &dlk) + AC’61k 

Xr,. = 61:h.T Yyk z - T+‘p’rcli,l - TG’p$(/k] 

Xi; = w;,;, 1’;; = T&& + T&&; + b’13,~ 

x:; = w:I( - Wf,[, 2Y:; z - T;?MTlh. - T;%F,~ 

x:i”, = a,z&, Yl’.& = T;.lp.lTlik + Ti$&li,; 

(cm = 4h + &1, 0 = 8’ -+ 82 1 f . . 3 

R, :zz RI1 z - R12, Ml/( = M& = - M;~) 

Tensors Xi, Y’, X9, Yg, X1l, Yll, X14, and Y14 are obtained by the substit- 
ution of the superscript 2 for 1 in expressions for Xs, Ys, X*, Y8, X10, Yl”, 
X13, and Y13. 

As usual, we assume the existence between fluxes and forces of the linear relation- 

ship 

Y’ = Tjl A'? "X" 
8 

If we denote components 
respectively, then according 

of tensorsY’, Xs,and A’,” byYi,..,, Xjs...g, and A::,$, i,.q, 
to the Onsagar-Casimir principle of symmetryAj:,P,, ;,.,P 

= rf A;.$, j-q. The signs & correspond to cases of same and different parities 

of forces X” and X’ with respect to microscopic velocities. 
The tensors AT,” (up to and including the sixth) depend on the metric tensor g 

and, possibly, on other quantities not comprised in the number of forces and fluxes. 
To such quantities belong C , C, dk - t&C, TT, and TF. It is permitted to int- 

roduce in one of the tensors theargument TT and in the others TF , but not simultane- 
ously both (this would have been equivalent to the inclusion besides the parameter of 
state TT or TF , also, the rest TF _ TT which is a thermodynamic force). 

The general form of tensors which depend on the indicated set of arguments is est- 

ablished on the basis of the theory of tensor functions [l]. 
Some of the fluxes in (3.5) are of the formY’ = TT-lYT’ + Tp-lYFr + Yor, 
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while ultimately we have to determine the quantity j? = YT? -I- YF’> We set 

T;?yT“ = 2 A?“Xs _ 2’ _ &, T$YFr = 2 &+X8 + Z’ _ y$ 13* @ 

A’,” z A;?‘; A>“, 

s 

x0’ = y;T + Y;fl 

where ATrss and AprlS depend on the same arguments as _4r9 s,and Z’ may 

further depend also on X’ (Z’ does not contribute to dissipation). From this 

y’ = 2 arPXs + Zp (TF - TT) - ~0’ (3.7) 
8 

a?78 = TTA’;’ $ TFA$‘, ~0” = TTY& f TFY& 

Tensor $1 s retains the characteristic symmetry of Arts , provided it is obser- 
ved in the decomposition of the latter into components. It will be readily seen that 
the parts AT’*’ and A$‘,s that disturb the symmetry differ only by their signs, 

hence in y’ they can be considered as included in Z’. 

4. The determining relationships and final equations are in the general case diff- 
icult to survey. We shall, therefore, present only some of their distinctive properties, 
assuming the mixture to be isotropic in the sense that tensors arIs are independent of 

dkC . We shallalso omit without further notice a number of cross effects in deter- 

mining relationships and assume throughout that tensors Z’ are equal zero. 

In conformity with statements at the end of Sectn. 3 the stress tensors plka and 

the interaction force Rk. can be defined as follows: 

P(uijl = [PF' + UC’ - aos~ee~~l - uoe~7eii2 - (TF - TT) ~*,l]&~ _ t4- 
d&?,,l - uBr7elk2 - u %l” w(,k)’ - &11W(lk)2 

P(/!.)’ = [pF2 f UC2 - Uo'~6eii1 - uo7,7eii2 - (TF - TT) a’vl](jlk _ 
uo796elk1 - u7?‘elk2 - U7f10~(lk)1 - u7,i1w(lk)2 

P[lkl’ = -Us,5 B,kl - Ue,gBlk2, pclk,2 = - U9,8Blkl _ Ug,gBlkt 

RI, = -d5 (ukl - uk2) + Udkc - U6v2C?kTT - u5&?$TF 
(a = ATTT f AFT~, A = AT + AF) 

1) 

Let us analyze the case when the difference between velocities uk, ukl and uk2 
is small, and can be neglected, except in the expression for Rk . The equations of 

momenta for the mixture and suspended phase assume, respectively, the forms 

pdtuk = -8, b - U’(TF - TT)I i- (Q -k 74) d$$h -k (4.2) 

elk&% f Qlk&% f &W1k + pfk 

w[k = dow (lk)’ + a1’W(,k)2 - %@[lk]’ - q,2w[,k]a 

PCdGk = --dk[pl - U6v1 (TF - TT)I -k (qI1 -i- T~~)~,~,uI, f (4.3) 

Wlk’ = Ua910wclkj1 + U6hc[kj2 - U8,*W[~k,1 - U8,9w[~k,2 

where dt = d I dt 
The rheological coefficients are denoted here as follows: 
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Pressure p is determined by formula 

p = @ -t- pF1 + pF2 

fpl = pg + aC’ = pc1 - ppv + pl?‘P) 

Equation (4.3) is used for determining the diffusion flux of suspended particles 

Jk SE pc (U&l - uh_) = pc (1 - C) (Ukl - ?A&‘) (4 4) 

and Eq. (4.2) makes possible the elimination of the Laplacian dlalUk from Jh-. 
After some simple operations we obtain 

Jk = ape (1 - c) {(h - c) d&P - (1 - c) &#F” f ~~~k~~~ - 
(4.5) 

aW$r - aW$TF + p [(h - C) d$l, - (h.ik - Cf&l - 
(TF - TT) (?&ul - dk&) - (hd - &*) dk (T&v - TT) - 
elk @if,% - f%rl?) --s2a (Wrf* - 4%‘) - 
h&W/h. + a,w,?tll, a = (Lsy-1, h = (Q + 3-Q) (qx + q4y 

In accordance with (1.2) and (1.4) pF1 and pF2 are functions of C and TF; 
it is reasonable to assume that the rheological coefficients depend on the same quantit- 

ies and on TT . It then follows from (4.5) that: 

Jk = o {k&P - Dr~$,c - gT@)TT - gFtk&TF’) - 

p%3 w a WC? - palwclrf - ydl~llkll -- ~~~~~~~~~~ + (4.6) 

x, I@ - C) d&k - (hf, - Cfisq 

The elementary formulas that express 5 rik, pa1 ~9, and X in terms of previously 
determ~ed coefficients are of little interest and are omitted here. For Biti, k 
and cPlh we have the following equalities: 

D = aC(I - C)[(1 -c,zgLLg- + VF - TT)X 

f h 
Aa’ a&* --- 
ac ac 11 

k==aC(l -C)(h -C) (4.3) 
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(4.9) 

The analysis of formulas (4.6)-(4.8) makes possible the following qualitative ass- 
essment of the character of diffusion of suspended particles . 

1". Presence of the fluctuation mechanism intensifies Brownian diffusion. If we 
assume that the fluctuating particles behave like gas, i. e. pF1 - CTF and that 

pal + pp2 N TF , then D ,- Db (TF / TT) , where Db is the Brownian diff- 
usion coefficient at temperature TT . For instance, setting TF - q”eoZ3, where 

rp and e” are the characteristic viscosity and deformation rate, and ,? is the di- 

mension of a suspended particle, on dimensional considerations we obtain the linear 

relation between D and pi , and e, that agrees with experimental data [8-lo]. 

2”. An analogy exists between barodiffusion and thermodiffusion with coefficients 

k and $‘. 

3”. A diffusion flux may be induced by gradients of microrotation velocity and 

microdeformation rate to the extent that these velocities contribute to tensors of force 

StreSSeS. 

4”. The dependence of transport coefficients on particle concentration and fluct- 
uation intensity results in the effective anizotropy of the diffusion flux [ll]. 

For the admixture diffusion flux we obtain on the same assumptions as above the 

formula 

j, = PC’IJ’,~ - TT (u~*~~~TT + a4v3dlT~ + ~~>~dlp) (4.10) 

Noting that 

Y12. = ZQ - uI = - fl / p (1 - C), p = p (TT, c / (1 - 0) 

from (4.10) we have 

Reverting to (4.6) we obtain 

ii = - PD,G -/- t _ C pc C&r - D&r) dkC + 
!4.11) 

( -&GFkZ- T &%k, &TF + . . . , ) D, = T Ta4,4 -$- 
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Thus the presence of large particles can considerably affect the diffusion of adm- 
ixture. First, the effective diffusion coefficient depends on TF and C (for instance 

II,-+0 when C -+- 1 when particles are impermeable to the admixture); second, 

admixture transport together with the carrier fluid is in the opposite direction to the 
diffusion flux J, of suspended particles, and, third, the direct effect of fluctuation 

on the admixture transport is possible (when Jr = 0 ), owing to gradient TF (see, 
e. g. , [12- 171) . 

Note that the relation of JI, and jk to &c and a,,~ defined by formulas (4.6) 

and (4.11) does not satisfy the condition of symmetry, i. e. does not reduce to the form 

Jk = a,,d& + a&+& + . . ., jk = a&kc + ~,&$ + . . . (4.12). 

where aI and u2r are interrelated. Moreover, the presence of admixture does not 
generally affect the flux JI, (if the transport coefficients are independent of c), which 
conforms to the physical picture. These two consequences would not be obtained if the 
mixture was represented as a single-phase fluid, since in that case gradients a,c and 
dp would represent thermodynamic forces and Jh. and i,- their associated fluxes. 

In the model considered here d,,C represents a parameter of state. 

Let us now consider the formula that determines the exchange of energy between 

the degrees of freedom 

6) = TTT,v [~‘*‘(TF - TT) $ a1a6eii1 + a1,‘eii21 z 
TTTF&’ (TF - TT) 

We summate the second of Eqs.(2.8) with respect to CI on the same assumptions 
as made previously and obtain 

f&Up = --a$& + @F - @ (4.13) 

where mF denotes the fluctuation energy generation by dissipative processes: 

@F = -pF(Zk)e,k - PWklBlk + .-. . 

Equation (4.13) is generally used for the determination of TF , Of special int- 
erest is the particular case of that equation that defines a quasi-stationary mode, when 
D’k:ZtQ it gives then the possibility of directly linking TF with tensor invari- 

ants that define the kinematics of the medium. 
For instance, if microrotations and microdeformations are neglected in @F then 

TTTF (TF - TT) d1 = TjE’e&[k , Hence TI, is determined as a function of 

TT and C , and I, = e&?rk. . Since the transport coefficients may depend 

on TF,the resulting equations actually define a viscous medium with nonlinear prop- 
erties due to fluctuations. 

In such medium the diffusion fluxes and, in particular, the migration of suspended 
particles across the direction of basic motion can be induced by the nonuniformity of 

the rate of shear, since J, and jk depend on dkTF. 

5. The above analysis permits a number of generalizations which do not require 
a repetition of basic arguments and do not affect the essential qualitative characteris- 
tics of the model. Thus, the allowance for the particle moment of momentum red- 

uces to the inclusion in the energy I?‘ and in Eqs. (2.5) of additional terms whose 
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form is a priori known [Z]. It is evident that the omission of cross effects and, in par- 
ticular, of the dependence of RR on gradients wija, ~1 and j;; on Ukl - ui;?, 

does not alter the general structure of formulas (4.6) and (4. ll), and do not make 

(4.12) symmetric. 
Various modifications of determining equations by nonlinear terms that do not 

contribute to dissipation [l] are possible (some of these have already appeared in (3.6) 

and (3.7)). Thus it is possible to substitute for expression (4.1) for the friction force 
the expression 

Rfi = - a5p5 (Ukl - U& -f- . . . + N[ik] (Ui’ - ui*) 

where ,YIik, is an arbitrary antisymmetric tensor. 
The most rigid assumption in the developed approach is the introduction of “prog- 

ressing” fluctuation temperature suggested in [6] as the unique in essence characteristic 

of fluctuations. In fact, fluctuating rotations and deformations of particles determined 

by their effective temperatures, as well as fluctuation anizotropy, may occur. These 
factors and the effect of particular properties of a mixture (phase compressibility, par- 
ticle elasticity, orientation of these, variation of particle volume) can be taken into 

account in a phenomenological approach with suitable change of formulas for internal 

energy (3. 
Simpler models with allowance for fluctuations can evidently be obtained, if at 

the beginning additional kinematic variables are excluded or the motion of individual 

phases is not separately analyzed. However in that case the law of suspended particle 

diffusion does, evidently, not define the barodiffusion in an incompressible medium. 

Equations that correspond to such simplifications can be obtained on the basis of Sects. 

1-4. 

The author is grateful to V. L, Berdichevskii, S. S. Grigorian, A. G. Kulikovskii, 

G.A. Liubimov, and N. Kh. Shadrina for discussing the subject of this paper. 
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